Derivation of the phase-field-crystal model for colloidal solidification.
نویسندگان
چکیده
The phase-field-crystal model is by now widely used in order to predict crystal nucleation and growth. For colloidal solidification with completely overdamped individual particle motion, we show that the phase-field-crystal dynamics can be derived from the microscopic Smoluchowski equation via dynamical density-functional theory. The different underlying approximations are discussed. In particular, a variant of the phase-field-crystal model is proposed which involves less approximations than the standard phase-field-crystal model. We finally test the validity of these phase-field-crystal models against dynamical density-functional theory. In particular, the velocities of a linear crystal front from the undercooled melt are compared as a function of the undercooling for a two-dimensional colloidal suspension of parallel dipoles. Good agreement is only obtained by a drastic scaling of the free energies in the phase-field-crystal model in order to match the bulk freezing transition point.
منابع مشابه
Amplitude expansion of the binary phase-field-crystal model.
Amplitude representations of a binary phase-field-crystal model are developed for a two-dimensional triangular lattice and three-dimensional bcc and fcc crystal structures. The relationship between these amplitude equations and the standard phase-field models for binary-alloy solidification with elasticity are derived, providing an explicit connection between phase-field-crystal and phase-field...
متن کاملPolymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D.
We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucle...
متن کاملPhase-field method for computationally efficient modeling of the solidification of binary alloy with magnetic field effect
We present a new 2D phase-field model with anisotropy, applied to the dynamics and structure of free dendrite growth during solidification process of binary alloys under the action of magnetic field. The physics of solidification problem of Ni-Cu alloy such as conditions for crystal growth rate are discussed and show good qualitative agreement with numerical simulations. In order to improve the...
متن کاملSimulation of Polymer Crystal Growth with Various Morphologies Using a Phase-field Model
A finite element-based phase-field model was developed to simulate crystal growth in semi-crystalline polymers with various crystal morphologies. The original Kobayashi’s phase-field model for solidification of pure materials was adopted to account for polymer crystallization. Evolution of a nonconserved phase-field variable was considered to track the interface between the melt and the crystal...
متن کاملA Navier-Stokes phase-field crystal model for colloidal suspensions.
We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 79 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2009